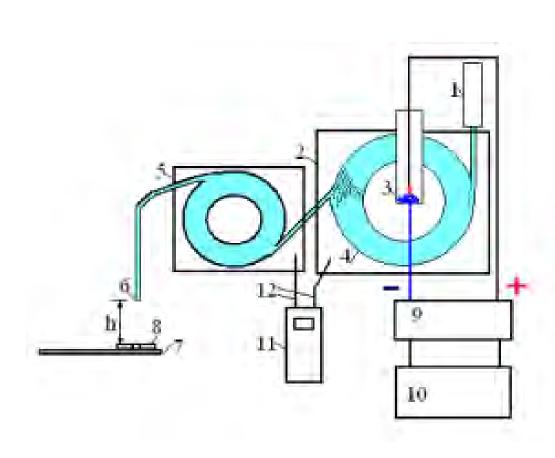


Необычное вещество. Опыты с разрядом, лазером, оптоволокном и термопарой.

Д.С.Баранов¹, В.Н.Зателепин¹ А.Л.Шишкин²

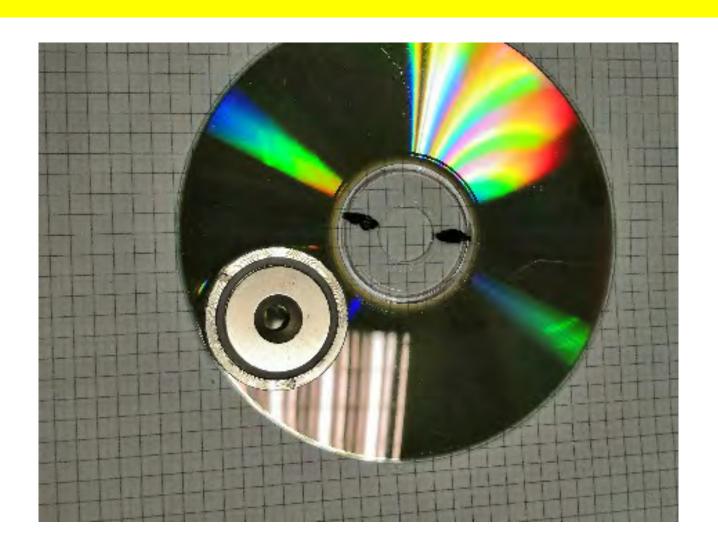
¹Лаборатория ИНЛИС, г.Москва, zvn07@ yandex.ru


²OOO «АВКБЕТА», г. Дубна, Московская область

Идея эксперимента

В работе [1] Баранов Д.С., Зателепин В.Н., Шишкин А.Л. 27 Российская конференция по холодной трансмутации ядер химических элементов и шаровой молнии, Москва, 2-7 октября 2022 «Эксперимент по перемещению «частиц неизвестного излучения» по оптоволоконному кабелю при пропускании лазерного луча» показано, что лазерный луч, прошедший по оптоволоконной линии рядом с зоной разряда (не проходя непосредственно через разряд), оказывает разрушительное воздействие на поверхность СД диска. В [1] это воздействие связывается с переносом в лазерном луче нового типа вещества, которое авторы называют «темный водород».

Настоящий доклад - продолжение [1]. Показано, что лазерный луч, проходящий по оптоволоконной линии, расположенной рядом с зоной искрового разряда, оказывает воздействие на показание термопары, отличающееся от воздействия при выключенном разряде.


Схема экспериментального стенда работы

- 1 маломощный лазер на входе
- оптоволоконного кабеля,
 2 диэлектрическая камера,
 3 высоковольтный разрядник, источник
- 4 бухта оптоволоконного кабеля длиной
- 5 вторая диэлектрическая камера со второй бухтой оптоволоконного кабеля диной 3 м, 6 выход оптоволоконного кабеля, 7 компьютерный СД диск, который служит детектором ЧНИ, 8 ниодимовый магнит, фокусирующий поток ЧНИ,

- 9 генератор Маркса, 10 источник высокого напряжения, 11 регистратор температуры, 12 термопары.

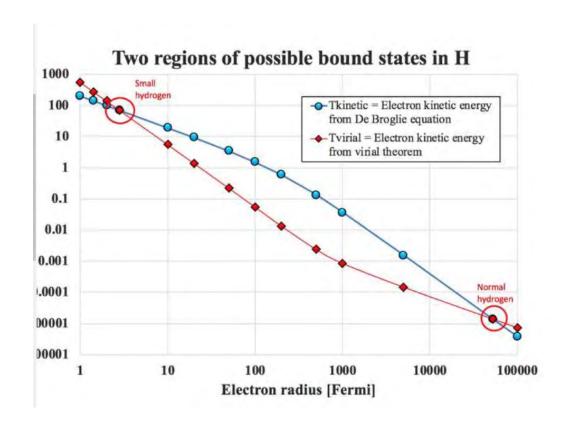
Фотография СД диска и магнита с отверстием в центре.

Результаты эксперимента с зеленым лазером 532 нм

Облучение 12 мин. Без разряда

Облучение 12 мин. Разряд. Область кратера 60 мкм

Выводы из эксперимента [1]


- В зоне разряда генерируется необычное вещество, которое распространяется в окружающем пространстве
- Это вещество наполняет не только пространство, но проникает в оптоволокно, по которому транспортируется лазерный луч.
- Это вещество имеет характерный размер много меньше, чем расстояние между атомами оптоволокна.
- Это вещество взаимодействует с лазерным лучом, получает импульс от лазерного луча и переносится по оптоволокну.
- Это необычное вещество взаимодействует с поверхностью СД диска, и химическим образом (не кинетическим воздействием) разрушает поверхность СД диска.

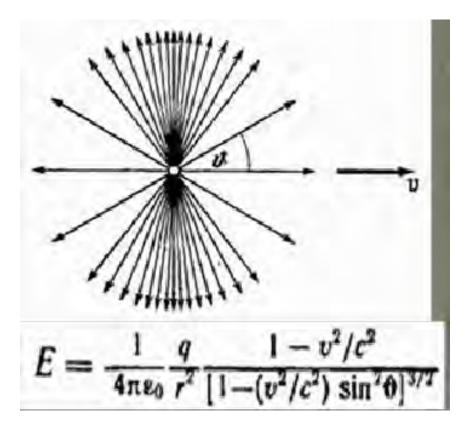
Некоторые типы необычного вещества

- •Гидрино, Brilliant Light Power, Рэндел Миллс
- Темный водород, ИНЛИС
- •Магнито-торо-электрические кластеры, Дубовик, Шишкин
- •Electrum Validum Objects (EVO), Кен Шоулдерс

Гидрино

J.Va'vra. A simple argument that small hydrogen may exist. Phys. Letters B, 2019

- Учет кулоновского взаимодействия
- Учет взаимодействия собственного магнитного момента электрона и орбитального магнитного момента.
- $a^4/r^4 + 1/r^2 1 = 0$.
- Для а << 1 есть два решения
- r = 1, r = a
- а коэффициент при учете магнитной силы
- Модель Бора учет только кулоновского взаимодействия. Потеряно решение r = a.
- Для создания гидрино электрон должен иметь на бесконечности кинетическую энергию Wкин > 13,6 эВ. Если Wкин < 13,6 эВ, то электрон свалится в « потенциальную яму Бора», и образует обычный протий.


«Темный водород» $\hat{\mathbf{H}}_2$ Некоторые свойства.

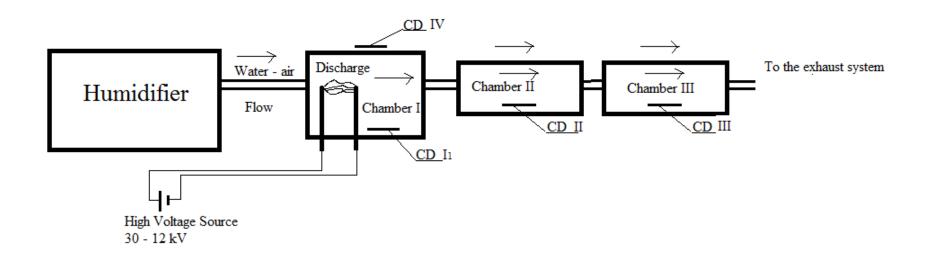
• - атом \check{H}_2 состоит из двух протонов во внешней области \check{H}_2 , и двух тяжелых релятивистских электронов (электронная пара) в центре \check{H}_2 ,

- - диаметр области протонов $D = 1,2*10^{-13} M$,
- - диаметр области электронной пары $D_e = 6*10^{-14} M$,
- - суммарная масса $m_{H2} = 2,01$ а.е.м.,
- - суммарный заряд = 0,
- По сравнению с молекулами обычного вещества атом \mathring{H}_2 можно считать точечной частицей, имеющей уникальные свойства нет заряда, но есть магнитный момент, и есть электрическое поле вокруг атома \mathring{H}_2

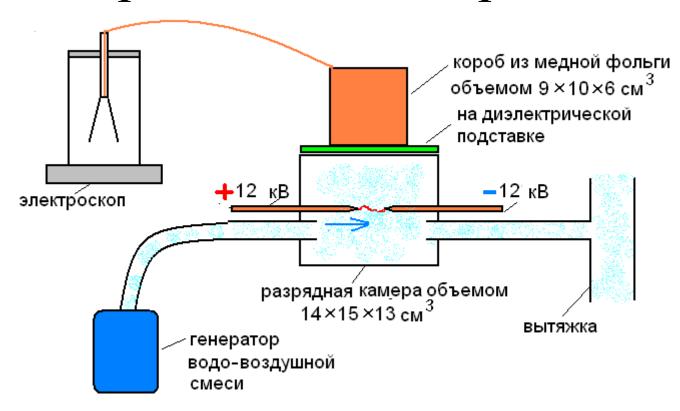
Основное электромагнитное свойство гидрино и «темного водорода»

Электрическое поле двигающегося заряда

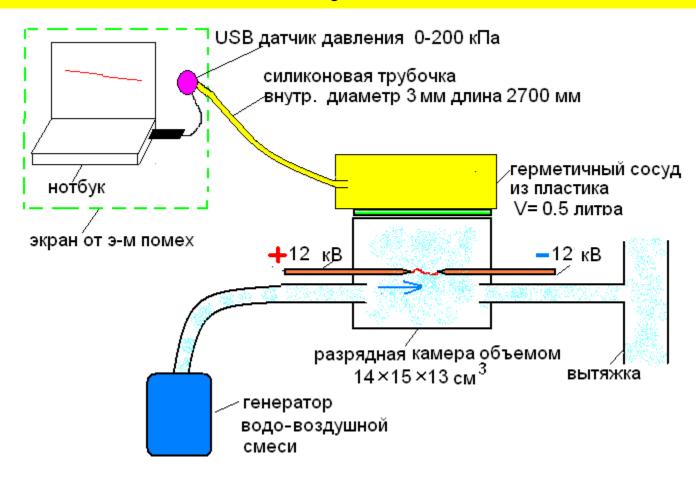
- Суммарный заряд равен нулю, но поле не равно нулю, и не является дипольным полем.
- По оси вращения электронной пары электрическое поле на порядок превышает кулоновское поле электронов за счет релятивистской скорости электронов.
- Магнитное поле на оси вращения электронной пары на порядок выше магнитного поля электрона.
- Появление «темного водорода» в каком-то объеме создает ощущение появления избыточных электронов


Термины

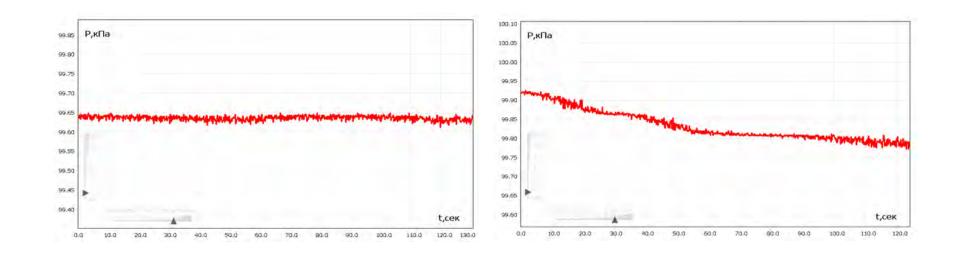
- Далее мы будем использовать термин **«темный водород»** для обозначения необычного вещества, генерируемое в электрическом разряде.
- Нам понятно, что некоторые свойства такого необычного вещества могут быть объяснены с привлечением модели «гидрино».

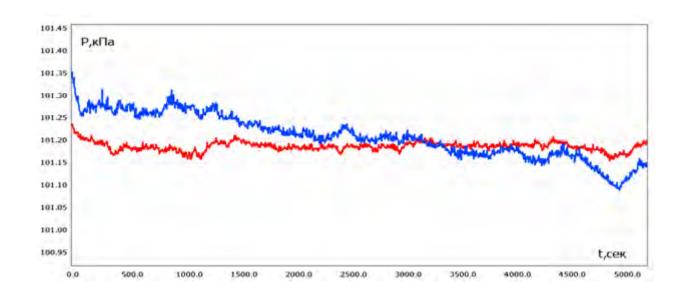

Экспериментально установленные свойства «темного водорода»

- Следы (треки и кратеры) на диэлектрических материалах
- Конвективный перенос совместно с обычным веществом
- Увеличение заряда электроскопа около электрического разряда
- Уменьшение давления в замкнутом сосуде около электрического разряда
- Перенос по оптоволоконной линии вместе с потоком фотонов
- Рассеяние и поглощение рентгеновских фотонов
- Действие на биологические объекты

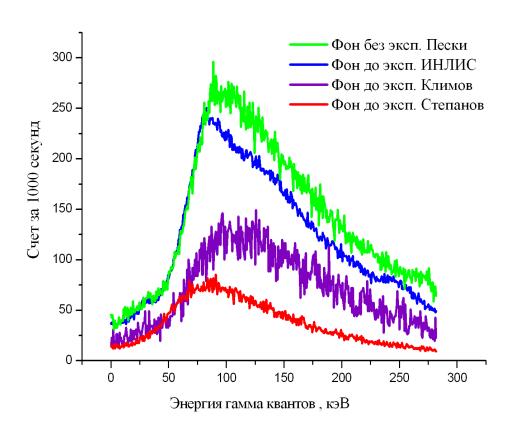

Конвективный перенос «темного водорода» потоком водо-воздушной смеси

Появление заряда на электроскопе, который разряжается длительное время. Схема эксперимента с электроскопом


Схема эксперимента с герметичным сосудом

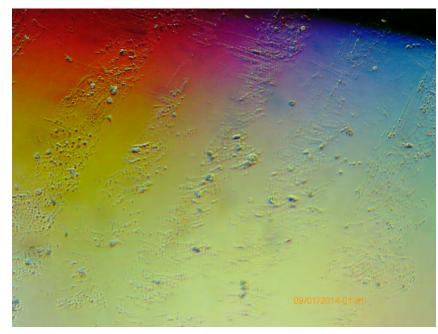

Изменение давления в герметичном сосуде при облучении «темным водородом»

Без разряда


С разрядом

Изменение давления в герметичных сосудах, облучаемых «темным водородом»: синяя кривая — 5 см от разряда, красная кривая — 30см

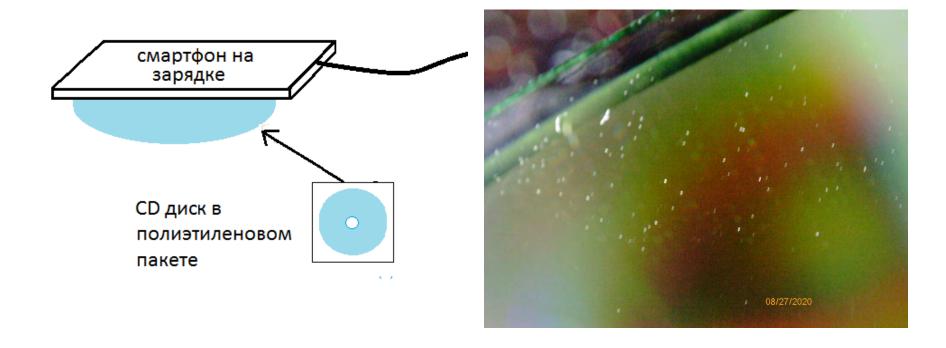
Сравнение рентгеновского фона в различных помещениях



Процессы, в который генерируется неизвестное вещество.

- Ni +H2 теплогенератор
- Разряд в водо-воздушной среде
- Горение углеводородных топлив
- Двигатель внутреннего сгорания автомобиля (есть и горение углеводорода, и электрический разряд)
- Работа аккумулятора смартфона
- Кипение воды при высоком давлении
- Сквашивание кисломолочных продуктов

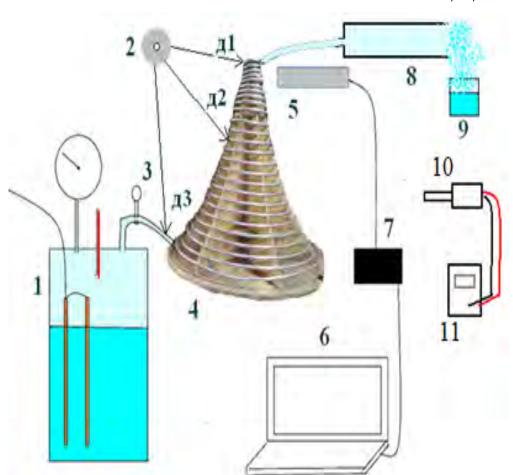
Схема эксперимента с газовой горелкой и регистрацией «темного водорода», 3 часа



Двигатель внутреннего сгорания 20 мин работы

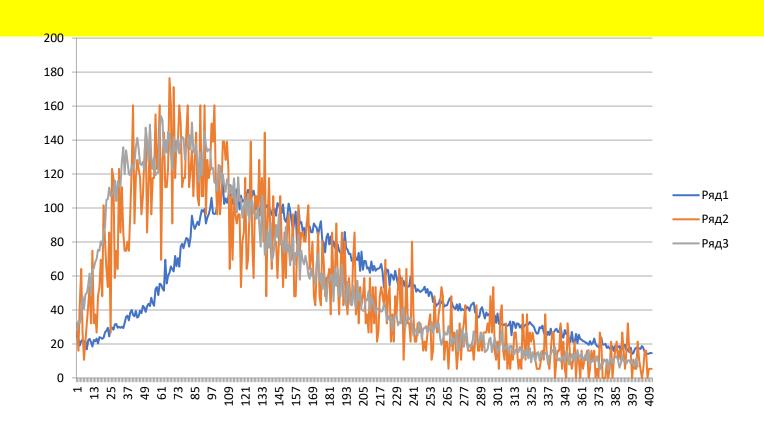


Зарядка аккумулятора смартфона 2 часа



Еще фото СД диска под телефоном

Схема стенда по исследованию рентгеновского спектра в окрестности парогенератора высокого давления



• 1- емкость высокого давления из нержавеющей стали с нагревателем, термометром и манометром

термометром и манометром,
2 - места установки СД дисков (
д1,д2,д3), 3 - кран на выходе из емкости высокого давления в

магистраль пара,
• 4 - алюминиевая трубка свернутая в коническую спираль, 5 - гамма спектрометр (NaI), 6- амплитудный анализатор на ПК, 7- блок питания и предусилитель, 8 — магистраль выпуска пара после конической спирали, 9 - емкость для сбора конденсата пара, 10 - бифилярный датчик Авшарова, 11 — вольтметр.

Сравнение спектров (30 атм): синий — до начала нагрева, красный — выпуск пара, серый — через 30 мин после выключения установки.

Действие электромагнитной волны на частицу, имеющую магнитный момент $\mu_{ ext{H2}}$

- Пусть на частицу падает плоская электромагнитная волна, которая распространяется вдоль оси X с частотой ω и волновым вектором k
- $E_z = E_0 \sin(\omega t kx), B_v = B_0 \sin(\omega t kx),$
- $E_0/B_0 = (\mu_0 \varepsilon_0)^{-0.5},$ (1)
- где E_0 , B_0 амплитуды электрического и магнитного полей, μ_0 , ϵ_0 магнитная и диэлектрическая проницаемость вакуума
- На магнитный диполь $\mu_{\check{H}2}$ частицы действует магнитное поле электромагнитной волны силой F и моментом M
- $\mathbf{F} = (\mathbf{\mu}_{\mathbf{H}2}, \mathbf{grad}) \mathbf{B}$ (2)
- $\bullet \qquad m_{\text{H}2}^* \mathbf{a} = \mathbf{F} \tag{3}$
- $\bullet \qquad \mathbf{M} = [\boldsymbol{\mu}_{\mathbf{H}2}, \mathbf{B}] \tag{4}$
- $\bullet \qquad d \mathbf{L}_{\mathbf{e}}/dt = \mathbf{M} \tag{5}$
- где $a, \mu_{\check{H}2}, m_{\check{H}2}, L_e$, ускорение, магнитный момент, масса, момент количества движения частицы (5)

Оценка средней за период колебаний лазерного света силы, действующей на «темный водород» $\hat{\mathbf{H}}_2$

• Оценка амплитуды магнитного поля в лазерном луче

$$B_0 = (2*N_{laser}* \mu_0/cS_{laser})^{0.5} = 10^{-3} \text{ Тл}$$

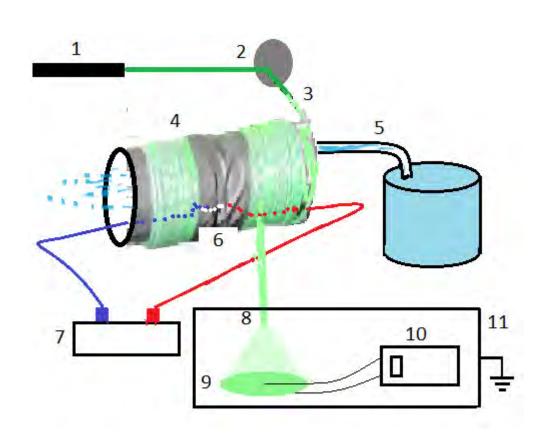
Где $N_{laser} = 0,3$ Вт мощность зеленого лазера, с – скорость света,

 $S_{laser} = 2*10^{-9} \, \text{м}^2$ — сечение 32 оптических волокон оптоволоконного кабеля.

Средняя сила за период колебаний зеленого лазера создает ускорение атома «темного водорода» $\hat{\mathbf{H}}_2$

$$a = (\mu_{H2*} B_0)^2 / 2(L_e c m_{H2}) = 1 \text{ m/ce} \kappa^2$$

Направление ускорения $\hat{\mathbf{H}}_2$ зависит от направления магнитного момента при попадании частицы в луч лазера. При магнитном моменте $\boldsymbol{\mu}_{\check{\mathbf{H}}2}$, направленном вдоль оси x, атом «темного водорода» $\hat{\mathbf{H}}_2$ двигается вдоль оси x.

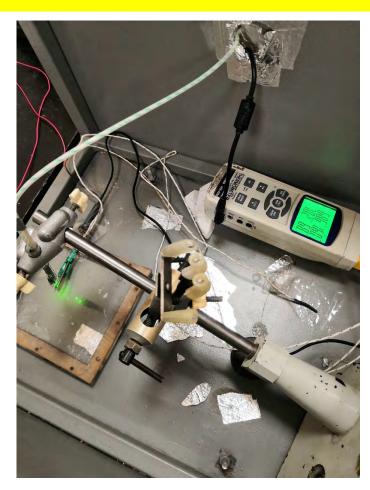

Двигающиеся против оси х частицы $\hat{\mathbf{H}}_2$, выжигают не СД диск, а лазер. Это произошло в эксперименте.

Преобразование энергии при взаимодействии магнитной частицы с электромагнитной волной

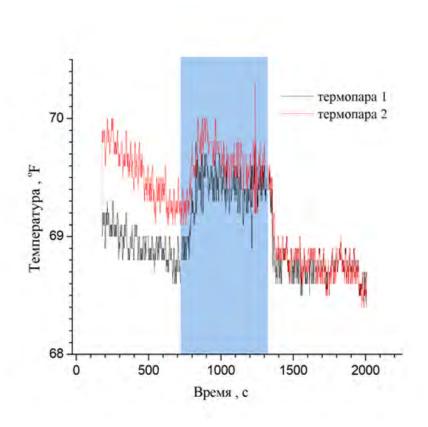
- При взаимодействии магнитной частицы с магнитным полем электромагнитной волны происходит преобразование электромагнитной энергии волны в поступательную и вращательную энергии частицы за счет взаимодействия с магнитным моментом частицы.
- Взаимодействие происходит непрерывно по спектру без выделенных линий.

Лазерное излучение, разряд, термопара, неизвестное вещество («темный водород»).

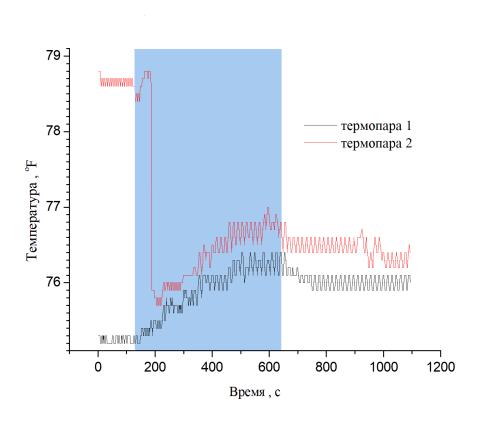
Схема стенда по воздействию лазерного луча на термопару



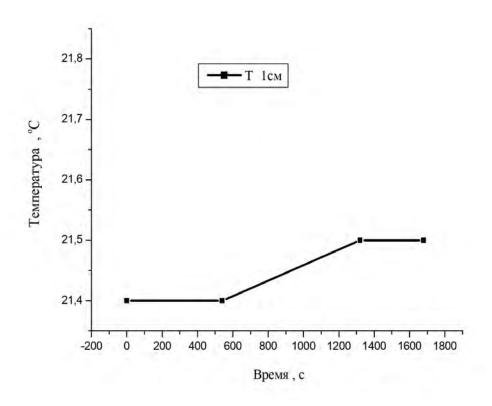
- 1 Лазер N<0,3 Вт, зеленый 532 нм
- 2- Зеркало,
- 3- Вход в оптоволоконный кабель (световод),
- 4- Катушка из световода (10 м),
- 5- Генератор водовоздушной смеси,
- 6- Высоковольтный разряд внутри катушки из световода,
- 7- Высоковольтный источник 30 кВ,
- 8-Выход из световода,
- 9- Пятно луча света из световода,
- 10- Измеритель температуры с термопарами,
- 11 Металлический заземленный ящик.

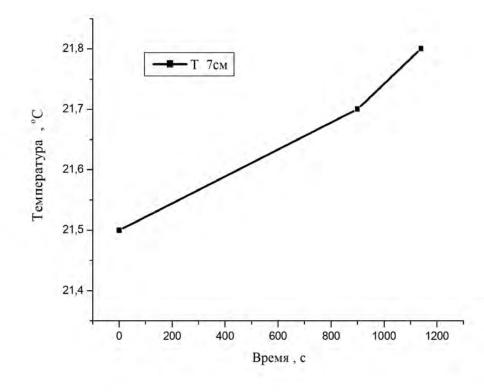

Фото стенда по облучению термопары светом и неизвестным веществом

Облучение термопары светом, вышедшим из световода



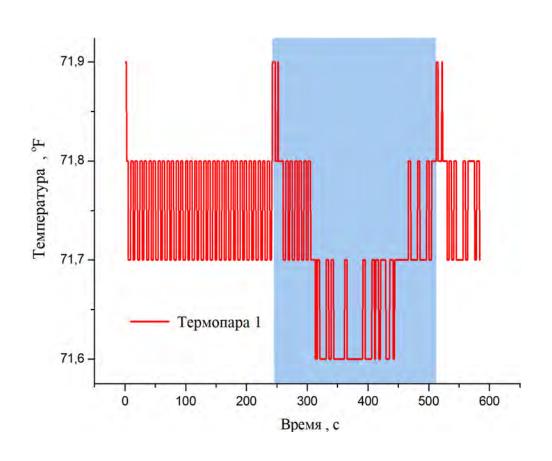
Облучение термопары светом, прошедшим по световоду в окрестности электрического разряда

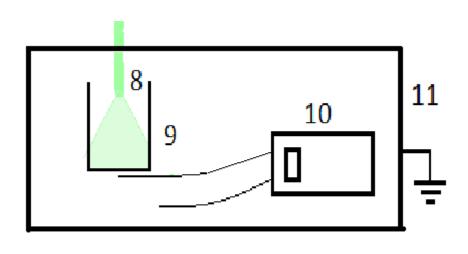

- Синяя зона разряд
- Термопары 1 и 2 расположены рядом друг с другом в центре светового пятна лазера на расстоянии 10 см от выхода из световода
- От 0 сек до 720 сек работает лазер, но разряд не включен
- С 720 сек по 1320 сек разряд включен
- С 1320 сек разряд выключен, работает только лазер


Облучении термопары светом при разных расстояниях между выходом из световода и термопарой

- Синяя зона работа разряда
- Термопара 1 расположена в центре светового пятна на расстоянии 1,5 см от выхода из световода
- Термопара 2 расположена в стороне от центра светового пятна на расстоянии 4 см
- Разряда включен на 120 сек, и выключен на 680 сек
- Лазер выключен на 900 сек

Облучение ртутного термометра





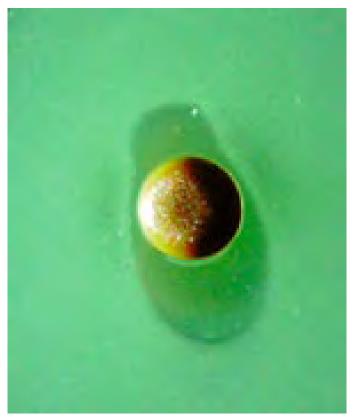
Квартальнов В. Проникающая компонента, в луче газового лазера

- Проникающая компонента в луче лазера
- Владимир Квартальнов еще в прошлом веке обнаружил, что в луче лазера кроме света есть еще проникающее излучение [1]. Это излучение способно проходить через кювету с ртутью и сохранять геометрические характеристики лазерного луча. Детектором проникающего излучения был стаканчик со специально очищенной водой. В этой воде измерялась проводимость. Попадание проникающего излучения в стаканчик приводило к возрастанию проводимости воды. Еще одним детектором оказались пробирки с кровью исследователей. При попадании проникающего излучения на пробирку менялось РОЕ крови. Было проведено сравнение интенсивности проникающего излучения от разных лазеров. Наибольшая интенсивность была обнаружена у газовых (гелий-неоновых) лазеров, наименьшая у твердотельных лазеров с оптической накачкой. У газовых лазеров большая интенсивность проникающего излучения была для лазеров большей длины. Ни каких предположений о природе наблюдавшихся эффектов сделано не было.
- [1] Archive.aif.ru 18.07.2001 Бытовые лазеры убивают человеческую кровь.

Облучение термопары через светонепроницаемую преграду

Измерение постоянного электрического тока, протекающего через оптоволокно

Только лазер до вкл разряда	I = 0 A
Лазер + разряд	I = 0.019 A
Только лазер после выкл разряда	I = 0,003 A


Новый метод генерирования электрической энергии

- Известные методы:
- термоэлектрический, фотоэлектрический, химический, электромагнитный, ядерный
- Все известные методы связаны с разделением зарядов на этапе генерирования э/эн, и с движением зарядов навстречу друг другу на этапе потребления э/эн.
- Генерация «темного водорода» приводит к генерации отрицательного электрического поля вокруг «темного водорода». Это этап генерации э/эн.
- Последующее движение «темного водорода» в окружающее пространство этап потребления э/эн.

Воздействие лазерного луча, прошедшего около зоны разряда, на СД диск и парафин.

Изменение во времени «красного» шара, образовавшегося на СД диске при облучении лазером

12 апреля 2023

15 мая 2023

Облучение лазером мишени из парафина

Большой шар, состоящий из мелких частиц

Структура из мелких частиц в виде круга на поверхности

Ранее экспериментально установленные свойства «темного водорода»

- Следы (треки и кратеры) на диэлектрических материалах
- Конвективный перенос совместно с обычным веществом
- Увеличение заряда электроскопа около электрического разряда
- Уменьшение давления в замкнутом сосуде около электрического разряда
- Перенос по оптоволоконной линии вместе с потоком фотонов
- Рассеяние и поглощение рентгеновских фотонов
- Действие на биологические объекты

ВЫВОДЫ

новые, экспериментально установленные свойства «темного водорода»

- Экспериментально установлены новые свойства «темного водорода», генерируемого в электрическом разряде в присутствии молекул воды, . Самые существенные новые свойства:
- «Темный водород», облучая **термопару**, влияет на ее показания
- Характер изменения показаний термопары (повышение или понижение напряжения) зависит от длины пролета в воздухе после выхода из оптоволокна.
- При малой длине пролета в воздухе напряжение на термопаре снижается, что похоже на **«охлаждение»** спая термопары.
- При большой длине пролета «темного водорода» в воздухе напряжение на спае возрастает, что может трактоваться, как нагрев термопары.
- «Темный водород», на небольшом расстоянии от выхода из оптоволокна имеет проникающие свойства, и воздействует на термопару, расположенную за керамической стенкой.
- При переносе «темного водорода» по оптоволоконной линии регистрируется возникновение постоянного тока в оптоволоконной линии.
- Генерация «темного водорода» новый метод генерации электрической энергии.